https://nova.newcastle.edu.au/vital/access/ /manager/Index en-au 5 Fibulin-1c regulates transforming growth factor-beta activation in pulmonary tissue fibrosis https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:48369 Fbln1c-deficient (Fbln1c–/–) mice had reduced pulmonary remodeling/fibrosis and improved lung function after bleomycin challenge. Fbln1c interacted with fibronectin, periostin, and tenascin-C in collagen deposits following bleomycin challenge. In a potentially novel mechanism of fibrosis, Fbln1c bound to latent TGF-β–binding protein 1 (LTBP1) to induce TGF-β activation and mediated downstream Smad3 phosphorylation/signaling. This process increased myofibroblast numbers and collagen deposition. Fbln1c and LTBP1 colocalized in lung tissues from patients with IPF. Thus, Fbln1c may be a novel driver of TGF-β–induced fibrosis involving LTBP1 and may be an upstream therapeutic target.]]> Wed 15 Mar 2023 13:12:38 AEDT ]]> Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:30281 Fbln1c protected against CS-induced airway fibrosis and emphysema-like alveolar enlargement. In experimental COPD, this occurred through disrupted collagen organization and interactions with fibronectin, periostin, and tenascin-c. Genetic inhibition of Fbln1c also reduced levels of pulmonary inflammatory cells and proinflammatory cytokines/chemokines (TNF-a, IL-33, and CXCL1) in experimental COPD. Fbln1c⌿ mice also had reduced airway remodeling in experimental chronic asthma and pulmonary fibrosis. Our data show that Fbln1c may be a therapeutic target in chronic respiratory diseases.]]> Wed 11 Apr 2018 13:33:47 AEST ]]>